Bitte beachten:

Bitte bearbeiten Sie jede Aufgabe auf einem separaten Blatt Papier und schreiben Sie jeweils Übungsgruppe, Name, Name des/r Partner/-in/-s und Matrikelnummer in dieser Reihenfolge in die rechte obere Ecke (siehe Beispiel rechts). Übungsgruppe: z.B. Gruppe 1 (Schweighöfer)

Name: Max Musterfrau Matrikelnummer: 1 234 567 Partner: Max' Partner

Übung 6

Abgabe in die Briefkästen im 2. Stock von N120

bis zum Mittwoch, 27.05.2015, 10 Uhr

Aufgabe 1

- a) Zeigen Sie ausgehend von der Definition der freien Energie A, dass folgende Beziehung gilt: dA = -pdV SdT. Leiten Sie daraus einen Ausdruck für S (V_{const}), U (V_{const}) und p (T_{const}) ab und formen sie diese anschließend zu einer Maxwell-Beziehung um.
- b) Gehen Sie von der freien Enthalpie aus und zeigen sie, dass gilt:

a)
$$s = -\left(\frac{\partial G}{\partial T}\right)_p$$
; $V = \left(\frac{\partial G}{\partial p}\right)_T$

b) Skizzieren Sie das Guggenheim-Schema und bestimmen Sie damit die fehlenden Zustandsgrößen sowie das Vorzeichen:

$$\left(\frac{\partial S}{\partial ?}\right)_T = ? \left(\frac{\partial V}{\partial ?}\right)_P$$

Aufgabe 2

a) Zeigen Sie unter Verwendung der Definition von H und einer geeigneten Maxwell-Relation, dass folgende Gleichung gilt (α = isobarer Ausdehnungskoeffizient):

$$\left(\frac{\partial H}{\partial p}\right)_T = V(1 - aT)$$

- b) Bestimmen Sie die Änderung von H, wenn in dem System "flüssiges Wasser bei T = 303,15K" der Druck isotherm von 1 auf 4 bar erhöht wird.
- c) Bestimmen Sie die Änderung der freien Enthalpie G für obiges System.

(V_M = 18.1 ml/mol ; α = 2,57*10⁻⁴K⁻¹ - beide Werte sind hierbei als konstant zu betrachten)

Aufgabe 3

Betrachten Sie die Gibbs-Helmholtz Gleichung für eine chemische Reaktion:

$$\Delta_R G = \Delta_R H - T \Delta_R S$$

- a) Wie groß muss die Triebkraft sein, damit eine Reaktion spontan ablaufen kann? Was folgt daraus für die Gleichgewichtskonstante K?
- b) Unter welchen Bedingungen für $\Delta_R H$ und $\Delta_R S$ läuft eine Reaktion i) bei jeder Temperatur ii) bei keiner Temperatur ab?
- c) Bei welcher Temperatur dreht sich die Richtung der unten stehenden Reaktion um $(\Delta_R H^\circ, \Delta_R S^\circ \text{ temperaturunabhängig})$? $\Delta_R H^\circ = 171 \text{ kJ/mol}, \Delta_R S^\circ = 120 \text{ J/Kmol}$

$$C_2H_4(g) + H_2(g) ----> C_2H_6(g)$$

d) Zeigen Sie auf, dass man die Gibbs-Helmholz-Gleichung auch in der folgenden Form darstellen kann:

$$\left(\frac{\partial \left(\frac{G}{T}\right)}{\partial T}\right)_{P} = -\frac{H}{T^{2}}$$

Aufgabe 4

- a) Nehmen Sie an, dass ein System bei T = 0 K nur einen Mikrozustand einnehmen kann. Wie groß ist hier die Entropie? Warum gilt dies nicht für Wasser?
- b) Gehen Sie von der Gleichung $s=-\left(\frac{\partial G}{\partial T}\right)_p$ aus und leiten Sie einen Ausdruck für die Temperaturabhängigkeit der freien Enthalpie G(T) ab.
- c) Berechnen Sie ΔG von CCl₄ bei p=const. und Erwärmung von 25 °C auf 90 °C. S° (CCl₄) = 216,4 J/Mol K , c_p (CCl₄) = 131,75 J/Mol K