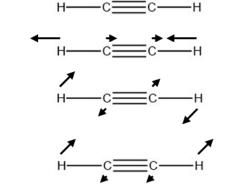
Besprechung am 11.06.2020

Übungsblatt 6

1) Die heiße Bande


Das IR-Spektrum von ${}^{1}\text{H}-{}^{127}\text{I}$ zeigt eine Absorption bei 2229,7 cm $^{-1}$ mit einer Schulter bei 2150,4 cm $^{-1}$. Diese hat eine relative Intensität von 10^{-4} und ist dem $v=1 \rightarrow 2$ -Übergang zugeordnet.

Betrachten Sie das Molekül nach dem Modell des Morse-Potentials und berechnen Sie:

- a. Die Kraftkonstante der H–I-Bindung.
- b. Die Wellenzahl, bei der der $v = 0 \rightarrow 2$ -Übergang angeregt wird.
- c. Die Temperatur, bei der die Messung durchgeführt wurde (*Hinweis*: Berücksichtigen Sie ausschließlich die Rolle der Besetzung der Zustände).

2) Schwingungsspektroskopie mehratomiger Moleküle

- i. Bestimmen Sie die Anzahl der Freiheitsgrade der folgenden Moleküle und geben Sie an, wie viele davon auf Translation, Rotation und Schwingung entfallen.
 - a. H
 - b. Br₂
 - c. Acetylen (H-C≡C-H)
 - d. Ethanol (CH₃CH₂OH)
- ii. Bestimmen Sie, welche der folgenden Schwingungen von Acetylen IR-Aktiv sind.
 - a. Symmetrische CH-Streckschwingung
 - b. Antisymmetrische CH-Streckschwingung
 - c. CCH-Biegeschwingung
 - d. HCCH-Kippschwingung

3) Bestimmung der Dissoziationsenergie zweiatomiger Moleküle aus spektroskopischen Messungen

Das IR-Spektrum von $^1\text{H}-^{19}\text{F}$ zeigt ein starkes Signal bei 3958,6 cm $^{-1}$ ($v=0\to1$) und ein schwaches Signal bei 7737,4 cm $^{-1}$ ($v=0\to2$).

Berechnen Sie die Dissoziationsenergie E_{Diss} des Moleküls anhand des Modells des anharmonischen Oszillators; Geben Sie das Ergebnis in cm⁻¹ an.