
Besprechung am 25.06.2020

Übungsblatt 7

1) Mikrowellenspektroskopie zweiatomiger Moleküle

In der folgenden Abbildung ist das Mikrowellenspektrum von ¹²C≡¹6O dargestellt.

- a. Berechnen Sie die Länge der C≡O-Bindung.
- b. Skizzieren Sie das Rotationsenergiediagramm des Moleküls für J ∈ {0, 1, 2}.
- c. Bestimmen Sie die Temperatur, bei der das Spektrum aufgenommen wurde.
- d. Skizzieren Sie das Mikrowellenspektrum von ¹³C≡¹6O bei derselben Temperatur. Benutzen Sie dafür Wellenzahleinheiten.

2) Trägheitsmoment und Trägheitstensor

- a. Berechnen Sie das Trägheitsmoment von $^{31}P^{35}Cl_5$ (trigonal-bipyramidale Struktur; $R_{P-Cl, ax} = 214 \text{ pm}, R_{P-Cl, \ddot{a}q} = 202 \text{ pm}$) um die Drehachsen \hat{n}_{\parallel} und \hat{n}_{\perp} .
- b. Berechnen Sie den Trägheitstensor \tilde{I} von H_2O .

	x/Å	y/Å	z/Å
0	0,000	0,000	0,000
Ha	-0,757	-0,587	0,000
H _b	0,757	-0,587	0,000

3) Zentrifugale Aufweitung (Bonusaufgabe)

- a. Berechnen Sie die Winkelgeschwindigkeit ω von ¹²⁷I₂ (R₀ = 2,67 Å) bei einer Temperatur von 296 K im höchstbesetzten Rotationszustand.
- b. Die Kraftkonstante der I–I-Bindung beträgt 1,7 N/m. Bestimmen Sie die Aufweitung der Bindungslänge R in dem oben berechneten Rotationszustand aufgrund der Zentripetalkraft F_Z (Hinweis: Setzen Sie die Rückstellkraft F_R und die Zentripetalkraft F_Z gleich; $|F_R| = k \cdot (R-R_0)$, $|F_Z| = \mu \omega^2 R \approx \mu \omega^2 R_0$).