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1 Hydrogen molecule

In Problem Set 7 you observed that the Bohr radius

a0 =
4πε0
e2

~2

m
(1)

emerged as a natural distance scale from the Schrödinger equation of the hydrogen atom. You also observed

that the energy of the ground state was proportional to the square of the reciprocal of the Bohr radius:

E1s = − ~
2m

1

a20
= −Ry. (2)

The positive value of this energy is called the Rydberg unit of energy. Like the Bohr radius, it is a natural unit

for measuring electronic energies in the hydrogen atom.

In the current problem, you will work with distances in units of a0, and energies in units of Ry. I will denote

such dimensionless energies with a tilde. For example, the ground-state energy in units of Ry is

Ẽ1s =
E1s

Ry
= −1. (3)

a. Linear combination of atomic orbitals and variational principle

In the lecture, when discussing the quantum mechanics of the molecule H2, you encountered the idea of

forming candidate molecular orbitals as a Linear Combination of Atomic Orbitals (LCAO). In particular,

a candidate wave function for the electronic ground state of H2 was written as a linear combination of two

1s atomic orbitals, each centered at one of the protons (denoted by A and B):

Ψ ≈ cAψA
1s + cBψ

B
1s. (4)

The coefficients cA and cB were complex numbers and were to be determined from the Variational Principle,

which is a method of finding approximations to the state with lowest energy (i.e., the ground state). In this

question, you will visually examine some of the results of this procedure.

The 1s wave function of the hydrogen atom depends only on the distance from the proton, r. Since we
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agreed to measure distances in units of the Bohr radius a0, we have

ψ1s(x) =
1√
π

e−x (5)

where x = r/a0.

Moving on to the hydrogen molecule, let us place proton A at the origin and proton B along the x axis at a

distance R from the origin. In other words, R is the distance between of the two protons in H2. Again, we

will work with X = R/a0. Then, the 1s atomic orbitals that are centered at A and B will be

ψA
1s(x) =

1√
π

e−x and ψB
1s(x) =

1√
π

e−(x−X). (6)

The molecular wave function in eq. (4) is a linear combination of these two functions.

• Plot the two functions in eq. (6) against x in the interval x ∈ [−10, 10] for X = 2 and X = 4.

From the variational principle one finds two solutions for the constants cA and cB in eq. (4), namely either

cA = cB or cA = −cB . These two solutions correspond to two molecular wave functions:

Ψ+ =
1√

2 + 2SAB

(ψA
1s + ψB

1s) and Ψ− =
1√

2− 2SAB

(ψA
1s − ψB

1s). (7)

The molecular wave functions Ψ+ and Ψ− are referred to as bonding and antibonding orbitals, respectively.

The energies that correspond to these wave functions were given in class as

E+ =
α+ β

1 + SAB
and E− =

α− β
1− SAB

, (8)

where α, β and SAB were some complicated integrals.

The integral SAB , which is referred to as the overlap integral, is dimensionless (i.e., unitless). The integrals

α and β, on the other hand, have units of energy. Since we agreed to measure all energies in units of Ry,

below you will work with α̃ = α/Ry and β̃ = β/Ry.

For the 1s atomic orbitals given above the integrals SAB , α and β can actually be calculated in closed form:

SAB =

[
1 +X +

1

3
X2

]
e−X

α̃ = −1− 2

[
1

X
− (1 +

1

X
)e−2X

]
+

2

X

β̃ = −(1− 2

X
)

[
1 +X +

1

3
X2

]
e−X − 2(1 +X)e−X .

(9)

The three integrals are functions of the inter-atomic distance X because the wave function ψB
1s in eq. (6)

contains X as a variable.

• Plot the overlap integral SAB as a function of X in the interval X ∈ [0, 10]. Observe that it varies

between zero (when the two atoms are far apart) and one (when they are on top of each other).
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• Plot α̃ and β̃ as functions of X. Because these functions contain 1/X, it does not make sense to have

X = 0. So plot them in the interval X ∈ [0.7, 10].

Which one of α̃ and β̃ is non-monotonic in X?

• Now calculate the (dimensionless) energies Ẽ+ and Ẽ− using eq. (8) and plot these against X.

Which one of the two energies is non-monotonic in X?

• From your plot, visually determine the value of X for which Ẽ+ reaches its minimum.

Similarly, determine the minimum value of the (dimensionless) energy Ẽ+.

b. Visualizing the bonding and antibonding wave functions

The optimal bond distance (in units of a0) appears to be at Xmin = 2.5. For this value of X

• plot the wave functions Ψ+ and Ψ− in eq. (7);

• plot the probabilities that correspond to these two wave functions.

Where are the two electrons of H2 mostly located?

c. Relation of the bonding energy to Morse potential

The Morse potential is

VMorse(X) = De

(
1− e−a(X−Xmin)

)2

, (10)

where De and a are some constants. Note that this potential is written such that it becomes equal to De

for large distances between the two protons, i.e., when X → ∞. On the other hand, the energies Ẽ+ and

Ẽ− both become equal to −1 at large separations of the two protons, as you can verify from your plots in

part a. This only means that the zero energy is defined differently in the two cases. To account for the

different choices of zero energy, we will subtract De from the Morse potential and will add 1 to E+. In this

way, both of them will become zero for X →∞.

• Plot VMorse(X) −De for some arbitrary values of the parameters De and a. On the same plot, show

the energy Ẽ+ + 1 from part a.

Now manually adjust De and a until you achieve a satisfactory agreement between the two curves.

Report the values that you find.
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