Electron Paramagnetic Resonance Spectroscopy

BASICS of CW-EPR

(CW: continuous waves)

What is EPR?

EPR is a spectroscopic technique that:

- detects unpaired electron spins (presence of unpaired electrons is mandatory)
- is nondestructive
- can be done in liquid or frozen solution, powders, crystals or gases
- yields structural and dynamical information
- needs for a standard experiment ~1 nmol of spins
- for a sample in solution: 30 µl sample (or less !)

of a concentration of ~100 μ M paramagnetic species

Where to find unpaired electrons?

- paramagnetic metal ions (Cu²⁺, Mn²⁺, Ni⁺, Co²⁺, Mo⁵⁺, Fe²⁺) e.g. in proteins and RNA
- metal cluster (FeS, Mn, Cu) e.g. in proteins or catalysis
- amino acid radicals of the protein backbone (tyrosine, triptophane, glycil, cystein)
- protein bound cofactor radicals (semiquinones and flavines)
- transient paramagnetic chromophores in light driven processes
- nitroxide spin labels attached to diamagnetic biomolecules
- defect centers in lattices
- unpaired electrons in semi- and superconductors
- stable organic high-spin radicals in molecular ferromagnets

In which research fields is EPR used?

- Physics: Susceptibility, Semiconductors, Quantum Dots, Defects, Quantum Computing...
- Chemistry: ET-Reaction Kinetics, Organometallics, Catalysis, Radicals, Photovoltaik...
- Biology: Enzymes, ET-Reactions, Folding&Dynamics, Metalloproteins, Structural Biology
- Radiology: Alanin radiation dosimetry, Radiation damage of DNA, food irradiation
- Material research: Polymers, Glases, Superconductors, Corrosion, Molecular Magnets...
- Archeology: dating...
- Geology: analysis of stones...

Magnetic Resonance Condition

Schematic of a CW EPR-Spectrometer

Block Diagram of a CW EPR-Spectrometer

MW Resonator

If that would be all, magnetic resonance spectroscopy NMR or EPR would only give:

Everybody could go home and the DFG would have vasted Millions of Euros.

BUT:

Isotropic g-value

g is in EPR what the chemical shift is in NMR

difference to g_{free} comes from spin-orbit coupling NMR chemical shift only parts per million

Still one line but shift on the magnetic field axis.

Microwave frequency bands and magnetic fields

Isotropic Hyperfine Coupling

Example for Isotropic Hyperfine Coupling

Field modulation technique

EPR Saturation

From: Lund et al. Radiation Research 172 (2009)

FIG. 2. Experimental data (\bigcirc) and fitted saturation curve for a polycrystalline pellet of ammonium tartrate irradiated with a dose of 1 kGy. The magnetic field was modulated at 750 Hz.