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The investigation of long-distance charge transport through
DNA is complicated because experimental results depend
upon the charge injection and charge detection systems used.
The rate of charge injection into a DNA base depends on the
redox potential of the injection system and also on the
structure of the DNA base since distortions of the base may
change its orbital overlap pattern and solvation energy.[1] The
nature of the charge detection system used to analyze the
arriving charge after its multistep transport through DNA is
also of crucial importance in studies on long-distance charge
transport. The influence of factors such as sequence on the
charge-transport rate can be measured experimentally only if
the charge detection is the fastest step of the whole process. In
assays where detection is approximately as fast as, or slower
than the charge transfer, the experimental results also reflect
the equilibration of the charge over the DNA bases according
to the Curtin–Hammett principle.[2] This situation has been
discussed in detail for long-distance hole transport through
DNA.[3]

Although hole transport through DNA is now rather well
understood, little is known about the transport of negative
charge (an extra electron) through the DNA double helix.
Recent observations have show that electrons also travel over
significant distances through DNA by a hopping process in
which pyrimidine bases act as temporary charge carriers.[4]

Experiments to investigate the sequence-dependence of such
extra electron transfer through DNA give conflicting results.

Although almost no sequence effect was observed in one
study,[5] another study[6] showed that an extra electron moves
more efficiently through A:T than through G:C base pairs. It
is clear that experiments on long-distance electron transport
through DNA lead to different results if different assay
systems are used. Herein, we try to explain the different
results with the help of the new injection system 3. In contrast
to the electron injectors used in the previous studies,[4–6] the
injector 3 transfers only one extra electron into the DNA
double strand upon irradiation. The basis for the design of the
new injector is the less-negative redox potential of thymine[7]

compared to those of dialkyl ketones.[8] Thus, a ketyl radical
anion should reduce an adjacent thymine base. We therefore
synthesized the thymidine derivative 3 by attaching the ketyl
radical precursor 2 to a thymine base (Scheme 1).[9]

Photolysis of ketone 3 at 75 K gave a product that
exhibited the ESR spectrum of the thymine-based radical 5a
(Figure 1).[10] The identity of the compound could be deduced
by comparing our measurements to a simulated spectrum
with hyperfine coupling constants of 39.2 and 10.5 G for the
two adjacent CH2 groups. These coupling constants are
similar to those observed for the unsubstituted thymine
radical in frozen solution.[11]

Scheme 1. Synthesis and reaction of the modified thymine 3.
TBDPS= tert-butyldiphenylsilyl.
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The formation of 5a can be explained as the result of a
Norrish cleavage[12] of the tert-butyl ketone 3 and subsequent
electron transfer to the thymine system (4!5).[13] The
intermediate radicals 4a,b were detected by addition of the
H-donor glutathione, which resulted in formation of alcohol 6
in up to 30% yield.[14] In the absence of glutathione, ketone 7
was formed as the main product (90%).

We used the open-backboned thymine dimer 9 (T=T;
Scheme 2) as the electron detection system in our experi-

ments.[4] Single-electron capture by the dimer induces a
cycloreversion leading to a strand break (9!10).[4] The
intermediate in this process is the dimer radical anion 8.[15]

To measure the influence of distance on the transport of an
electron through DNA we incorporated the electron injector
3 (TX) and the dimer 9 (T=T) into DNA single strands at

various sites and hybridized these strands with slightly longer
complementary strands. In this way, we synthesized the
modified double strands 11a–c (Figure 2).[16] Norrish photol-
ysis of the new electron injector 3 results in donation of a

single electron to the DNA duplex. The electron travels
through the base stack and eventually cleaves the cyclobutane
ring of the thymine dimer. This process leads to the formation
of the shorter DNA strands 12 and 13 in a 1:1 ratio.[17] The
cleavage yield decreased from 14 to 7 to 5%when the number
(n) of adenine:thymine (A:T)n base pairs between the
electron injection and detection systems was increased from
one to three. This decrease in yield is typical of a multistep
reaction in which the electron hops between adjacent thymine
bases,[18] and is in full accord with the data reported
previously.[4]

To investigate how the dimer cleavage process competes
with the charge movement, we prepared the double strand 14,
which contains two thymine dimers separated by a single A:T
base pair (Figure 3). According to the suggested cleavage
mechanism (Scheme 2), the negative charge is not annihilated
after the first cycloreversion and should, therefore, be able to
cleave another thymine dimer (T=T). Irradiation of double

Figure 1. Continuous wave X-band ESR spectrum of 5a in CH3CN at
77 K. The dashed line represents the simulation.

Scheme 2. Competition between cleavage and electron transfer for
thymine radical anion 8.

Figure 2. The efficiency of the cleavage of the thymine dimer in DNA
double strands 11a–c. Electron injection occurs through photolysis of
the modified nucleotide 3.

Figure 3. Cleavage of proximal and distal thymine dimers after
photolysis of DNA double strand 14.
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strand 14 indeed resulted in cleavage at both the proximal and
the distal thymine dimer site and formation of the shorter
strands 15 and 16.[17] Surprisingly, the cleavage yield at the
distal site (16= 11%) was more than twice that at the
proximal site (15= 4.5%).[19]

If an electron migrates to the distal thymine dimer only
after the proximal dimer has been cleaved (Scheme 2), then
the yield ratio 16/15 cannot be larger than 1.0:1. The observed
16/15 ratio of 2.4:1 indicates that a second scenario for
electron transport to the distal thymine dimer must exist in
which the proximal thymine dimer is not cleaved. This
observation was confirmed by detection of the cleavage
product 17 (3� 1%), in which the proximal thymine dimer is
intact but the distal dimer has been cleaved. These important
observations demonstrate that the cleavage rate of the
thymine dimer radical anion (8!10) is comparable to the
electron-transfer process (8!9).[20] Thus, the transition-state
energy of the charge detection process at the thymine dimer is
as high as that of the electron-transfer steps.[21] As a result,
possible effects of the DNA sequence on the rate of electron
transport through DNA are detected as weakened signals by
the thymine dimer assay. Ito and Rokita[6] used bromouracil
for charge detection. This compound has a less negative redox
potential than thymine or the thymine dimer.[22] Therefore,
the bromouracil charge-detection system might be faster than
the dimer clock used in our experiments. This difference could
explain why the assay used by Ito and Rokita detects an
influence of the base-pair sequence (A:T versus G:C) and of
the charge-transport direction (3’ versus 5’) on electron
transport,[6] but this effect is not observable with the thymine
dimer detection system.[5]
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