organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Biphenyl-4,4'-diyl bis(2,2,5,5-tetramethyl-1-oxyl-3-pyrroline-3-carboxylate)

Dominik Margraf,^a Denise Schuetz,^a Thomas F. Prisner^a and Jan W. Batsb*

^aInstitut für Physikalische und Theoretische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and ^bInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany

Correspondence e-mail: bats@chemie.uni-frankfurt.de

Received 18 June 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 169 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.126; data-to-parameter ratio = 19.8.

In the title compound, $C_{30}H_{34}N_2O_6$, the complete molecule is generated by a crystallographic 2/m symmetry operation. The 1-oxyl-3-pyrroline-3-carboxylate group lies on a mirror plane. The dihedral angle between the ring planes of the biphenyl fragment is constrained by symmetry to be zero, resulting in rather short intramolecular $H \cdots H$ contact distances of 2.02 Å. In the crystal, molecules are connected along the a-axis direction by very weak intermolecular methyl-phenyl C- $H \cdots \pi$ interactions. The C-H bond is not directed to the center of the benzene ring, but mainly to one C atom [C- $H \cdots C(x - 1, y, z)$: $H \cdots C = 2.91$ Å and $C - H \cdots C = 143^{\circ}$].

Related literature

For the preparation of the title compound see: Weber et al. (2002). For the crystal structures of related compounds see: Boevens & Kruger (1970); Bolte (2006); Duskova et al. (2001); Godt et al., 2000; Papoutsakis et al. (1999); Wiley et al., 1989 and Wiley et al., 1991.

Experimental

Crystal data

$C_{30}H_{34}N_2O_6$	V = 1356.6 (6) Å ³
$M_r = 518.59$	Z = 2
Monoclinic, C_2/m	Mo $K\alpha$ radiation
a = 6.931 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 9.461 (3) Å	$T = 169 { m K}$
c = 20.805 (4) Å	$0.44 \times 0.30 \times 0.10 \text{ mm}$
$\beta = 96.059 \ (14)^{\circ}$	

Data collection

Siemens SMART 1K CCD diffractometer Absorption correction: none 11267 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	105 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2074 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

2074 independent reflections

 $R_{\rm int}=0.056$

1552 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11C\cdots C3^{i}$	0.98	2.91	3.745 (2)	143
Symmetry code: (i) x –	1, y, z.			

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2852).

References

Boeyens, J. C. A. & Kruger, G. J. (1970). Acta Cryst. B26, 668-672.

Bolte, M. (2006). Acta Cryst. E62, m1609-m1610.

- Duskova, J., Labsky, J., Hasek, J. & Cisarova, I. (2001). Acta Cryst. E57, 085-086
- Godt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M. & Jeschke, G. (2000). J. Org. Chem. 65, 7575-7582.
- Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474–1480.
- Sheldrick, G. M. (2008). Acta Crvst. A64, 112-122.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Weber, A., Schiemann, O., Bode, B. & Prisner, T. F. (2002). J. Magn. Reson. 157, 277-285.
- Wiley, D. W., Calabrese, J. C., Harlow, R. L. & Miller, J. S. (1991). Angew. Chem. Int. Ed. 30, 450-452.
- Wiley, D. W., Calabrese, J. C. & Miller, J. S. (1989). Chem. Commun. pp. 1523-1526

supplementary materials

Acta Cryst. (2009). E65, o1784 [doi:10.1107/81600536809024659]

Biphenyl-4,4'-diyl bis(2,2,5,5-tetramethyl-1-oxyl-3-pyrroline-3-carboxylate)

D. Margraf, D. Schuetz, T. F. Prisner and J. W. Bats

Comment

The title compound was prepared as a reference compound for pulsed electron-electron double resonance measurements (Weber *et al.*, 2002).

The molecular structure is shown in Fig. 1. The molecule has 2/m symmetry: atoms C1, C4, O1, C5, O2, C6, C7, C8, C9, N1 and O3 lie on a mirror plane. There is a twofold axis perpendicular to this mirror plane and passing through the center of the central C—C single bond. There also is an inversion center at the midpoint of the central C—C single bond. The two six-membered rings of the biphenyl group are coplanar by symmetry, resulting in rather short intramolecular H···H contact distances of 2.02 A. The 1-oxyl-3-pyrroline-3-carboxylate group is planar. Approximate planarity of this group also has been observed in a number of related crystal structures (Papoutsakis *et al.*, 1999; Boeyens & Kruger, 1970; Bolte, 2006; Duskova *et al.*, 2001; Godt *et al.*, 2000; Wiley *et al.*, 1989 and Wiley *et al.*, 1991)

The crystal packing is shown in Fig 2. The molecules are connected along the a-direction by four symmetry-equivalent very weak intermolecular C_{methyl} —H··· π (phenyl) interactions (Table 1). The C_{methyl} —H bond is not directed to the center of the phenyl ring, but mainly to one C atom. There are no other short intermolecular contacts.

Experimental

The title compound was prepared similar to the procedure described by Weber *et al.* (2002). Single crystals were obtained by recrystallization of the compound from a mixture of toluene and n-hexane (3:1).

Refinement

The H atoms were positioned geometrically and treated as riding: C_{methyl} —H=0.98 Å, C_{planar} —H=0.95 Å, $U_{iso}(H)=1.2U_{eq}(C_{non-methyl})$ and $U_{iso}(H)=1.5U_{eq}(C_{methyl})$. The torsion angles about the C—C_{methyl} bonds were refined for the methyl groups.

Figures

Fig. 1. The structure of the title compound shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. Symmetry equivalent atoms are related by i: x, -y, z, ii: 2 - x, -y, 1 - z and iii: 2 - x, y, 1 - z.

Fig. 2. The crystal packing of the title compound, viewed down the *a* axis.

Biphenyl-4,4'-diyl bis(2,2,5,5-tetramethyl-1-oxyl-3-pyrroline-3-carboxylate)

Crystal data

$C_{30}H_{34}N_2O_6$	$F_{000} = 552$
$M_r = 518.59$	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/m	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 77 reflections
a = 6.931 (2) Å	$\theta = 3-23^{\circ}$
b = 9.461 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 20.805 (4) Å	T = 169 K
$\beta = 96.059 \ (14)^{\circ}$	Plate, yellow
$V = 1356.6 (6) \text{ Å}^3$	$0.44 \times 0.30 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Siemens SMART 1K CCD diffractometer	1552 reflections with $I > 2\sigma(I)$
Radiation source: normal-focus sealed tube	$R_{\rm int} = 0.056$
Monochromator: graphite	$\theta_{\text{max}} = 30.5^{\circ}$
T = 169 K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -13 \rightarrow 12$
11267 measured reflections	<i>l</i> = −29→29
2074 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier man
Remement on P	
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 0.9P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
2074 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
105 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Pri methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.58234 (19)	0.0000	0.29187 (6)	0.0310 (3)
O2	0.2989 (2)	0.0000	0.33551 (6)	0.0396 (4)
O3	-0.0951 (2)	0.0000	0.09831 (7)	0.0323 (3)
N1	0.0672 (2)	0.0000	0.13356 (7)	0.0231 (3)
C1	0.9329 (3)	0.0000	0.46943 (8)	0.0231 (4)
C2	0.8678 (2)	0.12604 (16)	0.43958 (6)	0.0317 (3)
H2A	0.9076	0.2135	0.4592	0.038*
C3	0.7462 (2)	0.12691 (16)	0.38187 (7)	0.0321 (3)
H3A	0.7036	0.2137	0.3622	0.039*
C4	0.6887 (3)	0.0000	0.35376 (8)	0.0261 (4)
C5	0.3862 (3)	0.0000	0.28870 (8)	0.0211 (4)
C6	0.2971 (2)	0.0000	0.22093 (8)	0.0179 (3)
C7	0.3911 (3)	0.0000	0.16826 (8)	0.0190 (3)
H7A	0.5285	0.0000	0.1696	0.023*
C8	0.2570 (3)	0.0000	0.10658 (8)	0.0205 (3)
C9	0.0794 (2)	0.0000	0.20539 (8)	0.0185 (3)
C10	0.2784 (2)	0.13302 (16)	0.06612 (7)	0.0324 (3)
H10A	0.1799	0.1325	0.0287	0.049*
H10B	0.4079	0.1348	0.0512	0.049*
H10C	0.2611	0.2169	0.0925	0.049*
C11	-0.01778 (19)	0.13337 (14)	0.22809 (7)	0.0261 (3)
H11A	-0.1535	0.1360	0.2093	0.039*
H11B	0.0503	0.2170	0.2142	0.039*
H11C	-0.0125	0.1327	0.2753	0.039*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0170 (6)	0.0590 (9)	0.0159 (6)	0.000	-0.0032 (5)	0.000
O2	0.0240 (7)	0.0753 (12)	0.0194 (6)	0.000	0.0022 (5)	0.000
O3	0.0215 (7)	0.0429 (8)	0.0295 (7)	0.000	-0.0116 (5)	0.000
N1	0.0176 (7)	0.0302 (8)	0.0200 (7)	0.000	-0.0050 (5)	0.000
C1	0.0194 (8)	0.0309 (9)	0.0182 (8)	0.000	-0.0018 (6)	0.000
C2	0.0363 (8)	0.0306 (7)	0.0256 (7)	0.0027 (6)	-0.0087 (6)	-0.0022 (5)
C3	0.0340 (8)	0.0360 (8)	0.0244 (6)	0.0067 (6)	-0.0066 (5)	0.0026 (6)
C4	0.0166 (8)	0.0452 (11)	0.0157 (8)	0.000	-0.0023 (6)	0.000
C5	0.0183 (8)	0.0246 (8)	0.0195 (8)	0.000	-0.0017 (6)	0.000

supplementary materials

C6	0.0164 (7)	0.0172 (7)	0.0192 (8)	0.000	-0.0020 (6)	0.000	
C7	0.0179 (8)	0.0188 (8)	0.0193 (8)	0.000	-0.0021 (6)	0.000	
C8	0.0211 (8)	0.0226 (8)	0.0169 (7)	0.000	-0.0015 (6)	0.000	
C9	0.0159 (7)	0.0193 (8)	0.0199 (8)	0.000	-0.0006 (6)	0.000	
C10	0.0376 (8)	0.0321 (7)	0.0262 (7)	-0.0044 (6)	-0.0032 (6)	0.0093 (6)	
C11	0.0200 (6)	0.0234 (6)	0.0346 (7)	0.0024 (5)	0.0012 (5)	-0.0035 (5)	
Geometric paran	neters (Å, °)						
O1—C5		1.354 (2)	C6-	—С7	1.3	32 (2)	
O1—C4		1.414 (2)	С6-	—С9	1.5	609 (2)	
O2—C5		1.199 (2)	С7-	C8	1.5	603 (2)	
O3—N1		1.2766 (19)	С7-	-H7A	0.9	500	
N1—C8		1.484 (2)	C8-	C10 ⁱ	1.5	299 (17)	
N1—C9		1.488 (2)	C8-	C10	1.5	299 (17)	
C1—C2 ⁱ		1.3970 (17)	С9-	C11	1.5	285 (16)	
C1—C2		1.3971 (17)	С9-	C11 ⁱ	1.5	285 (16)	
C1—C1 ⁱⁱ		1.495 (3)	C10	—H10A	0.9	800	
C2—C3		1.3922 (19)	C10	—H10B	0.9	800	
C2—H2A		0.9500	C10	—H10C	0.9800		
C3—C4		1.3760 (17)	C11	—H11A	0.9800		
С3—НЗА		0.9500	C11	C11—H11B		0.9800	
C4—C3 ⁱ		1.3761 (17)	C11	—H11C	0.9	800	
C5—C6		1.478 (2)					
C5—O1—C4		117.92 (14)	N1-	C8C7	99.	.78 (13)	
O3—N1—C8		123.07 (14)	N1-		110	0.45 (10)	
O3—N1—C9		122.02 (15)	С7-	C8C10 ⁱ	112	2.51 (9)	
C8—N1—C9		114.91 (13)	N1-	N1		0.45 (10)	
C2 ⁱ —C1—C2		117.19 (16)	C7-	C7—C8—C10		2.51 (9)	
C2 ⁱ —C1—C1 ⁱⁱ		121.40 (8)	C10	ⁱ —C8—C10	110	0.69 (15)	
C2-C1-C1 ⁱⁱ		121.40 (8)	N1-	—С9—С6	99.	.50 (13)	
C3—C2—C1		121.74 (13)	N1-	C9C11	10	9.27 (9)	
C3—C2—H2A		119.1	C6-	C9C11	113	3.40 (9)	
C1—C2—H2A		119.1	N1-	C9C11 ⁱ	10	9.28 (9)	
C4—C3—C2		118.90 (13)	C6-		113	3.40 (9)	
С4—С3—Н3А		120.6	C11		111	1.28 (15)	
С2—С3—НЗА		120.6	C8-	C10H10A	10	9.5	
C3—C4—C3 ⁱ		121.52 (17)	C8-	C10H10B	10	9.5	
C3—C4—O1		119.12 (8)	H10	A-C10-H10B	10	9.5	
C3 ⁱ —C4—O1		119.12 (8)	C8-	—С10—Н10С	10	9.5	
O2—C5—O1		123.36 (16)	H10	А—С10—Н10С	10	9.5	
O2—C5—C6		125.39 (17)	H10	В—С10—Н10С	10	9.5	
O1—C5—C6		111.25 (14)	С9-	C11H11A	10	9.5	
C7—C6—C5		126.39 (16)	С9-	C11H11B	10	9.5	
С7—С6—С9		112.83 (14)	H11	A—C11—H11B	10	9.5	
С5—С6—С9		120.78 (14)	С9-	-С11-Н11С	10	9.5	

	112 00 (1.0)	1111 A 011 1110	100 5		
C6—C7—C8	112.99 (16)	HIIA—CII—HIIC	109.5		
С6—С7—Н7А	123.5	H11B—C11—H11C	109.5		
С8—С7—Н7А	123.5				
C2 ⁱ —C1—C2—C3	-1.2 (3)	C9—N1—C8—C10 ⁱ	118.61 (10)		
C1 ⁱⁱ —C1—C2—C3	178.55 (19)	O3—N1—C8—C10	61.39 (10)		
C1—C2—C3—C4	0.1 (2)	C9—N1—C8—C10	-118.61 (10)		
C2-C3-C4-C3 ⁱ	1.0 (3)	C6—C7—C8—N1	0.0		
C2—C3—C4—O1	-173.34 (14)	C6—C7—C8—C10 ⁱ	-117.08 (11)		
C5—O1—C4—C3	-92.77 (15)	C6—C7—C8—C10	117.08 (11)		
C5—O1—C4—C3 ⁱ	92.77 (15)	O3—N1—C9—C6	180.0		
C4—O1—C5—O2	0.0	C8—N1—C9—C6	0.0		
C4—O1—C5—C6	180.0	O3—N1—C9—C11	-60.99 (10)		
O2—C5—C6—C7	180.0	C8—N1—C9—C11	119.01 (10)		
O1—C5—C6—C7	0.0	O3—N1—C9—C11 ⁱ	60.99 (10)		
O2—C5—C6—C9	0.0	C8—N1—C9—C11 ⁱ	-119.01 (10)		
O1C5C9	180.0	C7—C6—C9—N1	0.0		
C5—C6—C7—C8	180.0	C5—C6—C9—N1	180.0		
C9—C6—C7—C8	0.0	C7—C6—C9—C11	-115.91 (11)		
O3—N1—C8—C7	180.0	C5—C6—C9—C11	64.09 (11)		
C9—N1—C8—C7	0.0	C7—C6—C9—C11 ⁱ	115.92 (11)		
O3—N1—C8—C10 ⁱ	-61.39 (10)	C5—C6—C9—C11 ⁱ	-64.08 (11)		
Symmetry codes: (i) $x, -y, z$; (ii) $-x+2, -y, -z+1$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C11—H11C···C3 ⁱⁱⁱ	0.98	2.91	3.745 (2)	143
Symmetry codes: (iii) $x-1$, y , z .				

Fig. 1

Fig. 2

